
 

 

 

INTRODUCTION 

 

Innate mega hazards like floods, tornados, hurricanes, and 

droughts, etc. are a complex phenomenon. The prediction 

and monitoring of these natural calamities require highly 

specialized skills along with sophisticated tools. Amongst 

these, droughts are characterized with prolonged impacts as 

compared with rest of the hazards. Though the drought may 

be a normal sequel to the climate of a place, yet its detection 

and monitoring are often cumbersome (Smakhtin and 

Schipper, 2008; Zolotokrylin, 2010). Drought is a frequent 

and common feature of arid lands due to inconsistency of 

rains (Sen, 2008) but the humid areas have no exemption to 

it. The occurrence of drought results in devastating damages 

including socio-economic sufferings, ecological harm, and 

societal hardships (Wilhite, 2000). A drought emerges with 

prolonged deficiency of precipitation, generally for a season 

or more, consequently leading to detrimental impacts on 

agriculture, livestock, and/or human beings (Zultan, 2009). 

Disturbance of natural habitats accompanied by agricultural 

and rangeland degradation, water, and wind erosion are the 

principal causes of drought (White et al., 2003), in addition 

to the natural cycles of wet and dry climates. In recent years, 

the Asian region has experienced more frequent and severe 

droughts (Ganguli and Reddy, 2014; IPCC, 2014; Mishra et 

al., 2019). 

There are generally four categories of drought namely 

meteorological, agricultural, hydrological, and 

socioeconomic (Wilhite, 2000). Various approaches are used 

to monitor droughts throughout the world (Hayes et al., 

2000; Sahana et al., 2020) with each type of drought having 

its own indices (Zultan, 2009) that simplify the complex 

relationships and provide useful tools for the community and 

the stakeholders. These indices can also be used as historical 

references to check the probability of recurrence and as an 

aid in planning and design applications with futuristic vision 

(Tigkas et al., 2015). 

For the regions having an inadequate number of 

meteorological observatories regarding the inception and 

degree of drought, remotely sensed data provides quick and 

inexpensive insight into such phenomenon. Satellite based 

datasets are easily accessible to identify the commencement 

of drought, its duration, and intensity (Jain et al., 2009). The 

Moderate-Resolution Imaging Spectroradiometer (MODIS) 

is a sophisticated narrow bandwidth sensor that provides 

composited reflectance data free of cost (Justice and 

Townshend, 2002). MODIS product’s time series offer close 

to actual, uninterrupted, and comparatively high-resolution 

data. These data sets are highly useful for monitoring the 

inception and degree of drought in the areas of Pakistan with 

sparse ground observatories (Gu et al., 2008; Klisch and 

Atzberger, 2016). Remote sensing (RS) technology along 

with meteorological data (ground observations) can be 

effectively used for agro-meteorological drought monitoring 

through designing a CDI. Such indices are being 

successfully deployed in various countries for the drought 

watch (West et al., 2019). CDI is developed and used for 

agricultural drought in Europe and for assessment of climate 
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change vulnerability in America (Sepulcre et. al., 2012; 

Baptista, 2014). In Morocco, CDI is considered state of the 

art tool for drought monitoring (Noureddine et al., 2018). 

CDI has also helped in identifying the driest year and the 

driest month for the sub-basin of the Han River, South Korea 

(Waseem et al., 2015). 

Anjum et al., (2005) reported that the climate of Pakistan is 

semi-arid to arid with considerable temporal and spatial 

variability in rainfall and temperature. Almost 50% of 

agricultural land is irrigated while the rest 50% consists of 

rainfed areas. In rainfed areas growing crops are at the 

mercy of climatic factors and extreme events like floods and 

droughts. Rainfed areas are more susceptible to droughts 

than irrigated lands. SPI (McKee et al., 1993) has been used 

for monitoring drought in Pakistan in general (Adnan et al., 

2015). SPI, an index with a single parameter, alone may not 

accurately describe the drought scenario especially in 

arid/rainfed regions of Pakistan with a predominant drier 

climate. Moreover, SPI on a small scale does not generate 

reliable results when compared with the ground truth (Wu et 

al., 2001). Nevertheless, it is highly important to merge 

observed meteorological optima and satellite derived 

drought indices for monitoring agro-meteorological drought 

from a better perspective (Zultan, 2009). An effort has been 

made to develop CDI using NDVI (normalized difference 

vegetation index) and LST (land surface temperature), the 

two MODIS products as well as ground data of precipitation 

and soil moisture. This is likely to help predict and plan the 

management of drought prone areas with a futuristic vision 

of minimizing the losses accrued by this natural calamity. 

 

MATERIALS AND METHODS 

 

Study area: The present study has been taken up for the arid 

and rainfed areas of Balochistan, Pakistan which is relatively 

more frequently affected by drought in the country. The 

study area included 21 rainfed districts of the Balochistan 

province. These were divided into two groups based on the 

patterns of rainfall and topography of the area (Fig. 1). 

Recording data and developing the CDI: Two data sets i.e. 

LST and NDVI used in this study were retrieved from the 

MODIS products MOD11A2 and MOD13A2, respectively 

(http://modis.gsfc.nasa.gov/data/). MRT and ENVI software 

were used to preprocess the MODIS data (Yang et al., 

2012). These data sets were utilized in the form of monthly 

average values for simplification. Precipitation (P) data was 

acquired from CRU whereas the soil moisture (SM) data was 

extracted from National Weather Service Climate Prediction 

Centre (ftp://ftp.cpc.ncep.noaa.gov/wd51yf/global_monthly 

/gridded_binary/; Fan and Dool, 2004) as the observed data 

of the study area was very scarce. The time series of SPI 

(McKee et al., 1993) was used to compare the time series of 

the CDI. 

 

 
Figure 1. Shaded portion is showing districts in the 

southern half of the study area, whereas the 

rest of the districts contribute to the northern 

half. 

 

Three data components P, SM, and NDVI were taken along 

the X-axis, while the fourth component, the LST was taken 

along Y-axis. The values of the Y component were directly 

and those of X components were inversely proportional to 

drought. The large value of the Y component and small 

values of the X component show dry conditions and vice 

versa (Waseem et. al., 2015). The detailed procedure to 

calculate the composite drought index (CDI) is reproduced 

below for ease of access. The long term monthly data 

averages of X and Y components (for ti years) are set into 

DBk matrix with order (m x n) as under: 

DBk =  

𝑡1
⋮

𝑡𝑚

[{(
𝑋11 … 𝑋1𝑛

⋮ ⋱ ⋮
𝑋𝑚1 … 𝑋𝑚𝑛

) | (
𝑌11 ⋯ 𝑌1𝑛

⋮ ⋱ ⋮
𝑌𝑚1 ⋯ 𝑌𝑚𝑛

)}]         (1) 

Where the single matrix DBk of order (m×n) contains the 

average monthly values of X and Y for the period k (a year 

or a month). Here k represents months i.e. January to 

December, ti is the year with the suffix i starting from 1 to 

any value m. Elements Xij represents ith value of the jth 

components among NDVI, P, and SM. Similarly, Yij gives 

ith average value of the jth Y component (LST) with suffix j 

from 1 to n. The components in the matrix DBk have 

different dimensions; therefore, these are normalized into 

non-dimensional components given by equations (2). 

Subsequently, the NDBk contains non-dimensional 

components as given in equation (3). 

Nij =
obs(Xij)

∑ obs(Xij)
m
i=1

Nij =
obs(Yij)

∑ obs(Yij)
m
i=1 ]

 
 
 
 

                                    (2) 

NDBk =

t1
⋮

tm

(
N11 … N1n

⋮ ⋱ ⋮
Nm1 … Nmn

)   (3) 

ftp://ftp.cpc.ncep.noaa.gov/wd51yf/global_monthly
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Here elementsN11 to Nmm are corresponding to the normalized 

values (Nij). 
The corresponding weights to j components were assigned 

using the entropy of each component. These are identified 

using equations (4) to (6). Entropy measures the disorder of 

a system and provides better data characterization along with 

effective data measurement in comparison with variance 

(Shannon, 1948; Rajsekhar et al., 2015). The balanced 

relationships among the components were acquired through 

entropy weights thus getting fair comparative weights 

depending on the variability of components in all the data 

sets (2001-2016). 

ENj = −
1

ln (m)
∑ Nijln (Nij)

m
i=1  (4) 

  DSj = 1 − ENj                                  (5) 

Ewj =
DSj

∑ DSj
n
j=1 

                                  (6) 

Here Ewj represent the weights given to the components, 

satisfying, ∑ Ewi = 1n
j=1  and DSj shows the entropy between 

the jth components. 

The set of maximum values of the jth components member of 

X and the minimum value of the jth components from Y were 

used to identify most wet conditions (MWC, equation 7). 

Similarly, the minimum values of the jth components from X 

and the maximum value of the jth components of Y were 

used to determine the most dry conditions (MDC, equation 

8) from the data. 

MWC = (a1
+, a2

+, …… , an
+)   (7) 

MDC = (a1
−, a2

−, … … , an
−)   (8) 

Where    aj
+ = {maxNij, j ∈ X;minNij, j ∈ Y} and 

 aj
− = {minNij, j ∈ X;maxNij, j ∈ Y} 

PC, the differences in the present conditions in the 

subsequent years ti were calculated e.g. for t1, PC= (N11, N12 

…N1n). Likewise, for remaining years (comparing from the 

most wet and most dry conditions), PCs were calculated by 

applying WED (weighted Euclidian distance) formulae 

described in Equations 9 and 10 as follows: 

Si
+ = √∑ Ewj(Sij

+)
2n

j=1    (9) 

  Si
− = √∑ Ewj(Sij

−)
2n

j=1    (10) 

Here Si
+ and Si

− are the weighted Euclidian distances of 

MWC from PC and, MDC from PC respectively. 

       Sij
− = Nij − aj

+, and Sij
+ = Nij − aj

− 

Finally, the composite drought index (CDI) was calculated 

for every PC from MWC (Eq. 11). Thus, CDI is based on 

relative similarity ranging from zero to one. A value nearer 

to one indicated the wetter and nearer to zero indicated the 

drier conditions. The drought magnitude was also identified 

through the projected value of CDIi (Yang et al., 2012) as 

shown in Table 1. 

CDIi =
Sj
−

Sj
−+Sj

+    (11) 

 

 

Table 1. Classification of drought for CDI 

CDI Value Drought Magnitude 

< 0.10 Extreme dry condition 
0.10-0.20 Severe dry condition 
0.20-0.30 Moderate dry condition 
0.30-0.40 Mild dry condition 
0.40-0.50 Near normal to normal 

> 0.50 Above normal 

 

RESULTS AND DISCUSSION 

 

An Example from South Balochistan Data: The data 

(2001-2016) for the month of October were used to work out 

the consequent time series of the CDI. The parameters used 

were precipitation (P), soil moisture (SM), land surface 

temperature (LST), and normalized difference vegetation 

index (NDVI). All the data was averaged to monthly data 

sets arranged in matrix form{(DBk) 16x4, for k=October}, as 

shown in the Table 2 below: 

 

Table 2. Data Sets for X and Y-components 

For k = October 

Year (ti) 

X-Components Y-Component 

SM NDVI P LST 

DBk     
2001 19.27 0.13 0.01 40.28 
2002 7.97 0.14 0.28 41.12 
2003 39.44 0.19 0.01 39.81 
2004 11.29 0.15 1.38 38.89 
2005 39.69 0.16 0.01 39.85 
2006 63.20 0.16 0.06 39.60 
2007 94.56 0.23 0.01 38.45 
2008 48.87 0.15 0.01 40.69 
2009 49.74 0.15 0.04 39.80 
2010 59.43 0.15 3.36 39.99 
2011 114.70 0.15 0.12 37.94 
2012 89.86 0.19 0.01 39.11 
2013 61.44 0.16 3.20 40.32 
2014 14.55 0.14 0.86 39.74 
2015 23.70 0.14 1.44 40.47 
2016 26.97 0.14 0.01 40.48 

 

As different parameters in the data have different 

dimensions, therefore these were normalized to make them 

dimensionless. NDBk was the normalized form of DBk 

(Table 3). Afterward, the data values representing the most 

wet condition (MWC) were calculated using equation 7. 

Likewise, the data values representing the most dry 

condition (MDC) were calculated using equation 8. MWC 

the maximum value of a parameter (bold font) and MDC the 

minimum value of a parameter (in bold and italic font) were 

also shown in Table 3. Then the weights (weighted 

Euclidian distance) for SM, NDVI, P, and LST were 
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calculated from Equations (4) - (6). These weights (0.060, -

0.099, 1.148, and -0.108 respectively) were considered for 

the sample data. 

 

Table 3. NDBk- Normalized data for DBk 

For k = October    
Year 
(ti) 

X-Components   Y-Component 

SM NDVI P LST 

DBk     
2001 0.025 0.053 0.001 0.063 
2002 0.010 0.055 0.000 0.065 
2003 0.052 0.075 0.000 0.063 
2004 0.015 0.058 0.128 0.061 
2005 0.052 0.063 0.001 0.063 
2006 0.083 0.064 0.006 0.062 
2007 0.124 0.093 0.000 0.060 
2008 0.064 0.060 0.000 0.064 
2009 0.065 0.059 0.004 0.063 
2010 0.078 0.059 0.311 0.063 
2011 0.150 0.059 0.011 0.060 
2012 0.118 0.074 0.001 0.061 
2013 0.080 0.062 0.000 0.063 
2014 0.019 0.056 0.080 0.062 
2015 0.031 0.055 0.133 0.064 
2016 0.035 0.056 0.001 0.064 

 

All the values of MWC and MDC for October for the study 

area were taken from the data sets under study and arranged 

in Table 4. 

 

Table 4. Most wet (MWC) and most dry conditions 

(MDC) from Table-3 

MWC 0.150 0.098 0.311 0.060 

MDC 0.010 0.053 0.000 0.065 

 

Proceeding from equations (1) to (10), Si
+  and Si

− were 

calculated by applying WED (weighted Euclidian distance) 

formula. Afterward applying equation (11) time series of the 

composite drought index for the month of October was 

prepared (Table 5). 

 

Table 5. CDI Time series for October 

Year Si+ Si- CDI 

2001 0.333 0.004 0.01 
2002 0.334 0.002 0.01 
2003 0.333 0.007 0.02 
2004 0.198 0.137 0.41 
2005 0.332 0.010 0.03 
2006 0.327 0.018 0.05 
2007 0.332 0.025 0.07 
2008 0.333 0.013 0.04 
2009 0.329 0.014 0.04 
2010 0.015 0.333 0.96 
2011 0.320 0.036 0.10 
2012 0.331 0.025 0.07 

2013 0.333 0.017 0.05 
2014 0.249 0.085 0.26 
2015 0.191 0.143 0.43 
2016 0.332 0.006 0.02 

 

RESULTS 

 

The composite drought index time series for the entire study 

area are shown in Figures 2 and 3 in comparison with SPI. 

To estimate monthly drought in the selected area, 

calculations were based on monthly averages of the 

parameters used in this study. It is inferred from the CDI 

time series that October and November have been the driest 

months on the average (2001-2016) for the southern half of 

the study area (CDI = 0.16), while March was the wettest 

month (CDI = 0.37). On the other hand, the Years 2002 and 

2003 were the driest years (CDI = 0.02), whereas 2011 was 

the wettest year (CDI = 0.42) for the southern half of the 

study area. Data revealed (Figure 3) that October has been 

the driest month (CDI = 0.19) on the average (2001-2016) 

for the northern half of the study area while March was the 

wettest (CDI = 0.38); and 2002 was the driest year (CDI = 

0.02) whereas 2015 was the wettest (CDI = 0.51) in the 

study period (2001-2016). 

 
Figure 2. Averaged values (2001-2016) of CDI and SPI   

(1 month) for Southern half ofthe study area:a) 

annual and b) monthly basis 

 

From a deeper look, the computed CDIs for the southern half 

of the study area, March 2015, and June 2016, November 
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2006, and December 2006 were the wettest months with 

CDI values of 0.97, 0.94, and 0.93, respectively. September 

2002, 2003, 2004; June 2006, 2007 were the driest months 

with CDI value 0.00. February 2002, and 2006, May 2001, 

2002, 2003, and 2006; June 2003, and 2003; July 2008; 

August 2002, and 2012; September 2001; October 2001, and 

2002 and November 2002 were the driest months with CDI 

value of 0.01. For the northern half of the study area, 

December 2006, November 2006, April 2011, and February 

2011 remained wettest months with corresponding CDI 

values of 0.94, 0.91, and 0.90. January 2001, September 

2002, and 2003, and May, and June 2007 were the driest 

months with a CDI value of 0.00. February 2002, and 2006, 

May 2001, 2002, 2003, and 2006, June 2002, and 2003, July 

2008, August 2002, and 2012, September 2001, October 

2001, and 2002 and November 2002 were the driest months 

having CDI value of 0.01. 

 
Figure 3. Averaged values (2001-2016) of CDI and SPI   

(1 month) for Northern half of the study area: 

a) annual and b) monthly basis 

 

DISCUSSION 

 

There seems some anomaly in the dry and wet months in the 

results, which can be explained. As Balochistan observes 

scarce rainfall in summer monsoon (Ahmed et al., 2016), 

therefore, there seem moderate dry conditions from June to 

August (monthly average CDI ranges from 0.20-0.37). 

Winter rainfall over Pakistan is due to westerly wave 

component which provides a few episodes of precipitation 

from November to March (Ashraf and Routray, 2015). This 

component provides some relief in Balochistan during 

winter (Figure 2b & 3b). Data in CDI month wise time series 

(Figure 4 & 6) further suggested the higher values of CDI 

(>0.50) representing wetter conditions for the particular 

months, whilst the lower values (<0.50) showed drier states 

for the subsequent months. As drought monitoring in 

Pakistan is generally carried out with SPI (Adnan et.al., 

2015), therefore time series of SPI (one month) based on the 

same period (2001-2016) is projected to be compared with 

that of CDI. The Pearson Correlation Coefficient (PCC) test 

(Benesty et al., 2009) was applied to assess both the indices. 

Results (Figure 4 to 7), for both monthly and yearly 

comparisons, depicted that CDI and SPI were quite in 

agreement with each other. It is inferred from the 

comparison that CDI plots are considered to exhibit dry and 

wet conditions (Fig. 4 & 6). Quite some of the peaks of CDI 

match with those of SPI for dry as well as wet spells. Jamro 

et al., (2020) had also identified the similar driest periods in 

Balochistan using the different index and other techniques. 
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Figure 4. Monthly average CDI in comparison with SPI 

of southern half of the study area 

 
Figure 5. Yearly averages CDI in comparison with SPI of 

southern half of the study area 

 

Data showed that how frequently the drought with different 

magnitudes (e.g. extreme dry conditions, severe dry, 

moderate dry, mild dry, near normal, and above normal) had 

hit the study area (Figure 8). It seems SPI is picking wetness 

more and CDI is picking dryness more, similar results were 

shown by Waseem et al., (2015) for a case study of South 

Korea. The strong variation between CDI and SPI in 

extreme dry, severe dry, and normal conditions seems due to 

the difference in parameters used in both the indices. SPI 

(McKee et al., 1993) is computed using only precipitation 

and its one-month values are highly biased because if there 

is even 1 mm rain in one particular month it may not show 

drought (depending upon the normal values of rain at that 

particular region). Whereas CDI consumes soil moisture, 

land surface temperature, and vegetation index data along 

with precipitation; it may, therefore, represent a better 

drought picture of that particular region irrespective of its 

normal precipitation. Moreover, this diverse outcome could 

be for some other untried indicators of drought such as 

higher wind speeds and comparatively elevated temperatures 
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in the study area, which may hamper droughts; these are in 

general considered fixed in univariate drought monitor. So, 

the CDI values in Figure 8 are showing more frequent 

extreme droughts in the study area which is mainly arid and 

rainfed. Nonetheless, the results suggested that the CDI can 

be used to monitor drought which may consider maximum 

possible components causative of dry or wet incidents. Ali et 

al., (2017) conducted research on drought monitoring using 

other multivariate indices (to achieve better results in 

Khyber Pakhtunkhwa.  Although the chosen parameters 

have given promising results, yet changing parameters in the 

formulated CDI may lead to different results. Therefore, a 

set of parameters giving the best results can be selected. 

Furthermore, the study of vegetation condition of the study 

area may help for the validation of CDI for the study area. 

 
Figure 6. Monthly averages CDI in comparison with SPI 

of Northern half of the study area 

 
Figure 7. Yearly average CDI in comparison with SPI of 

Northern half of the study area 

 

 
Figure 8. Relative frequencies of CDI in comparison with 

SPI a) Southern half of the study area, b) 

Northern half of the study area. 
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Conclusion: The CDI developed in this study provides 

useful information that can be used to monitor droughts in 

agricultural areas over a short time scale. In the present 

study, a multivariate CDI was used to monitor agro-

meteorological droughts in rainfed areas of Pakistan. The 

CDI produces promising results over a one month period of 

drought monitoring in rainfed districts of Balochistan. 

Although the SPI is also a useful index and is frequently 

used to monitor drought in Pakistan, it has specific 

limitations (i.e., it is affected by rainfall intensity and the 

data time period) that may produce misleading results. 

Therefore, agro-meteorological drought monitoring using 

CDI will provide better monthly and seasonal drought 

information to more effectively manage the long term 

drought episodes. 

High resolution, short timescale (weekly, fortnightly) 

meteorological and satellite data, together with information 

regarding crop phenological stages is necessary to monitor 

agro-meteorological drought in an effective way. This study 

evaluated the performance of the CDI (in comparison with 

SPI) and provides useful information for stakeholders, 

disaster managers, policymakers, and researchers in the 

development of drought contingency plans. The results can 

be used to introduce climate-smart agriculture interventions 

to mitigate the impacts of droughts in the region. 
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