DIFFERENTIAL GENOTYPIC RESPONSE TO PHOSPHORUS APPLICATION IN LENTIL (LENS CULINARIS Medic)

Muhammad Hussain, Shamshad Hussain Shah and M. Shaft Nazir
Department of Agronomy. University of Agriculture, Faisalabad

A field study to evaluate the effect of phosphorus application on different agronomic traits of three lentil cultivars viz. Masoor-local, Masoor-85 and Masoor-93 was conducted at the Agronomic Research Farm, University of Agriculture, Faisalabad on a sandy-clay loam soil for two years. The phosphorus levels comprised 0, 25, 50 and 75 kg ha\(^{-1}\). Among the cultivars, Masoor-93 because of higher fruiting potential and 1000-seed weight gave the highest seed yield of 1163 kg ha\(^{-1}\) against the minimum of 773 kg ha\(^{-1}\) in Masoor-local. Phosphorus application (\(\beta\)) 75 kg ha\(^{-1}\) produced significantly the maximum seed yield of 1019 kg ha\(^{-1}\) which was 25.37\% higher than control (813 kg ha\(^{-1}\)).

Key Words: Differential genotypic response; Phosphorus application; Lentil

INTRODUCTION

There is a worldwide emphasis on the sustainability in food production and its nutrition. Although with the evolution of high yielding and fertilizer responsive cultivars of cereals, the production has increased to a satisfactory level but only cereals do not provide balanced nutrition being low in protein. Hence there is a need to pay due attention to the production of protein-oriented crops. Pulses are important world food crops contributing about 20\% of the world human food and providing 2.2 to 3.5 times more protein than cereals. Among the pulse crops, lentil is of special interest in Pakistan as it contains 23.7\% protein, a level about double than that of cereals and slightly higher than that of meat, egg and fish (Pellet & Shadarevian, 1970). Besides lentil seed contains considerable amounts of phosphorus (350-370 mg), potassium (790-80 I mg), calcium (68-79 mg) and magnesium (80 mg) per 100 grams of seed (Watt & Merrill, 1963) with energy content level of 357 kcal/100 g of seed (Manan et al., 1985). Lentil can fix 83-114 kg N ha\(^{-1}\) (Nutrnan, 1976) and under good symbiotic association with lentil more than 85\% of the total nitrogen need of the crop may be fulfilled by biological nitrogen fixation under good symbiotic association (Rizk, 1966).

In Pakistan lentil is cultivated on an area of 54887 hectares with total annual production of 35459 tonnes resulting in an average yield of 646 kg ha\(^{-1}\) which is much lower than world average lentil production of 928 kg ha\(^{-1}\) (FAO, 2000). The average lentil yield in Pakistan is low due to continuous cultivation of conventional low yield potential cultivars having excessive vegetative growth with poor response to inputs and improved agrm-management practices. Narrow adaptability, low stability of yield and susceptibility to stress. Second main reason for low yield of lentil is the insufficient application of essential plant nutrients. So the only way to increase unit area production is the judicious use of the nutrients and selection of high yielding and fertilizer responsive genotypes with wider adaptability. Among the nutrients phosphorus plays a special role in many physiological functions of crop plants and thereby improving the overall morpho-qualitative development. The present study was, therefore, designed to determine the effect of different phosphorus levels on the agronomic traits of three cultivars of lentil under irrigated conditions of Faisalabad.

MATERIALS AND METHODS

The study was conducted on a sandy-clay loam soil at the Agronomic Research Area, University of Agriculture, Faisalabad for two years (1997-98 and 1998-99). The soil was analysed for physico-chemical characters before sowing the crop. Three lentil cultivars (Masoor-local, Masoor-85 and Masoor-93) were tested at 0, 25, 50 and 75 kg P ha\(^{-1}\) with a uniform basal dose of 50-50 kg NK ha\(^{-1}\).

The experiment was laid out in a randomized complete block design with split arrangement keeping the cultivars in the main plots and phosphorus levels in sub-plots. The crop was sown during the second week of November in 25 cm apart rows with a single row hand drill using a recommended seed rate of 20 kg ha\(^{-1}\) for Masoor-local and 25 kg ha\(^{-1}\) for Masoor-93 in order to maintain uniform number of seeds per unit area in all the cultivars. The net plot size measured was 1 m x 2 m. All the fertilizers were well mixed into the soil at seed bed preparation before sowing the crop. The crop was kept weed free throughout the growing season. Two irrigations each of 7.5 cm depth were given to mature the crop in addition to seedbed preparation irrigation of 10 cm. The crop was harvested at its full maturity during the 2nd week of April every year. dried and then threshed manually. Observations on desired agronomic parameters were recorded using standard procedures. The harvest index was computed by using the following formula:

\[
\text{Harvest Index (HI)} = \frac{\text{Seed yield (kg ha}^{-1}\text{)}}{\text{Total biomass yield (kg ha}^{-1}\text{)}} \times 100
\]

The data collected were subjected to Fisher's Analysis of Variance Technique and Least Significant Difference (LSD) test at 0.05 \(P\) was used to compare the treatments' means (Steel & Torrie, 1984).

RESULTS AND DISCUSSION

The data pertaining to different agronomic parameters of three lentil cultivars as affected by phosphorus application are presented in Table I.
Table I: Agronomic traits of lentil as affected by different cultivars and phosphorus levels.

<table>
<thead>
<tr>
<th>Cultivars</th>
<th>Stand density (m²)</th>
<th>Plant height (cm)</th>
<th>Number of branches plant⁻¹</th>
<th>Number of pods plant⁻¹</th>
<th>Number of seeds pod⁻¹</th>
<th>1000-seed weight (g)</th>
<th>Seed yield (kg ha⁻¹)</th>
<th>Harvest index (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl _ Masoor-local</td>
<td>88.47</td>
<td>30.90 c</td>
<td>4.63 b</td>
<td>37.98 b</td>
<td>1.55 b</td>
<td>17.04 c</td>
<td>773 c</td>
<td>39.57 b</td>
</tr>
<tr>
<td>Cc _ Masoor-Sf</td>
<td>89.35</td>
<td>33.29 b</td>
<td>5.10 a</td>
<td>39.89 a</td>
<td>1.72 a</td>
<td>17.93 b</td>
<td>856 b</td>
<td>41.59 a</td>
</tr>
<tr>
<td>Cc _ Masoor-93</td>
<td>89.13</td>
<td>36.24 a</td>
<td>5.25 a</td>
<td>39.31 a</td>
<td>1.74 a</td>
<td>24.21 a</td>
<td>1163 a</td>
<td>42.45 a</td>
</tr>
<tr>
<td>LSD (0.05 1')</td>
<td>NS</td>
<td>2.309</td>
<td>0.3115</td>
<td>0.7253</td>
<td>0.02983</td>
<td>0.2405</td>
<td>0.5447</td>
<td>1.461</td>
</tr>
<tr>
<td>Phosphorus levels (kg ha⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P₀⁻ 0</td>
<td>88.88</td>
<td>30.45d</td>
<td>4.65 b</td>
<td>36.64 c</td>
<td>1.58 d</td>
<td>19.24 c</td>
<td>812 d</td>
<td>38.99 c</td>
</tr>
<tr>
<td>P₁⁻ 25</td>
<td>88.81</td>
<td>32.72 c</td>
<td>4.95 ab</td>
<td>38.73 b</td>
<td>1.66 c</td>
<td>19.60 b</td>
<td>906 c</td>
<td>40.82 b</td>
</tr>
<tr>
<td>P₁⁻ 50</td>
<td>89.18</td>
<td>34.48 b</td>
<td>5.10 a</td>
<td>40.40 a</td>
<td>1.70 b</td>
<td>19.96 a</td>
<td>986 b</td>
<td>42.15 a</td>
</tr>
<tr>
<td>P₁⁻ 75</td>
<td>8906</td>
<td>36.26 a</td>
<td>5.28 a</td>
<td>41.13 a</td>
<td>1.74 a</td>
<td>20.10 a</td>
<td>1018 a</td>
<td>42.85 a</td>
</tr>
<tr>
<td>LSD (0.05 1')</td>
<td>NS</td>
<td>1.688</td>
<td>0.3360</td>
<td>0.7812</td>
<td>0.Q3170</td>
<td>0.2549</td>
<td>0.2588</td>
<td>1.270</td>
</tr>
</tbody>
</table>

Entries in a column not sharing a letter differ significantly at 0.05 P.
NS Non-significant

Stand density at harvest (m²)
The data on stand density m²c revealed non-significant differences among the cultivars as well as among different phosphorus levels. However, the stand density on an average varied from 88.47 to 89.35 m²c among the cultivars and from 88.81 to 89.18 m²c among the different phosphorus treatments. Uniform plant density at harvest in all the experimental treatments was attributed to almost the same number of seedlings emerged m² as a result of uniform number of seeds sown per unit area in all the experimental units. These results are in agreement with those of Maqsood et al. (1991).

Plant height (cm)
Plant height varied significantly among the cultivars. More plant height was recorded in Masoor-93 (36.24 cm) than Masoor-85 and Masoor-local which also differed significantly from each other showing a plant height of 33.29 and 30.90 cm, respectively. Variation in plant height among the cultivars might be ascribed to their variable inherent growth potential and environmental adaptability. Similar results were reported by Gray et al. (1996) and Sadiq et al. (1998).

There were also significant differences among the different phosphorus levels in lentil cultivars. The plant height increased linearly with each successive increase in phosphorus dose from 25 to 75 kg ha⁻¹ with significantly the maximum at 75 kg P ha⁻¹ (36.26 cm) against the minimum at 30.45 cm in control. Increase in plant height with phosphorus application has also been reported by Kumar et al. (1993).

Number of branches plant⁻¹
There was significant variation among the cultivars. Masoor-93 although produced significantly more number of branches plant⁻¹ (5.25) than Masoor-local (4.63) but did not differ significantly from Masoor-85 which produced on an average 5.10 branches plant⁻¹. This variation was also attributed to their inherent variable growth pattern and response to environment.
These results are in line with those of Salam and Islam (1994) and Khan et al. (1998) who reported significant variation among the different lentil genotypes in respect of growth pattern.
Phosphorus application also affected the number of branches plant⁻¹ significantly. Although phosphorus applied at 50 kg ha⁻¹ increased significantly the number of branches plant⁻¹ (5.10) over control (4.65) but was on a par with 75 kg P ha⁻¹ (5.28).
However, the difference between 25 kg P ha⁻¹ and control was non-significant. These results are in consonance with those of Kumar et al. (1993).

Number of pods plant⁻¹
There were significant differences among the cultivars. Masoor-93 and Masoor-85 being at par with each other produced significantly more number of pods plant⁻¹ than Masoor-local showing the corresponding values of 39.3 I, 39.89 and 37.98 number of pods plant⁻¹, respectively. Variation in fruiting among the cultivars might be attributed to their variable inherent fruiting potential and response to environments. Similar results have been reported by Salam and Islam (1994) and Rahman and Sarkar (1997).
Phosphorus application also affected the fruiting behaviour of lentil to a significant level. Although all the phosphorus levels increased the number of pods plant$^{-1}$ over control significantly but the difference between 50 and 75 kg P ha$^{-1}$ treatments was non-significant which produced on an average 40.40 and 41.13 pods plant$^{-1}$, respectively against the minimum of 36.64 in control. Improvement in fruiting potential of lentil with the application of phosphorus has also been reported by Kumar et al. (1993) and Shivakumar et al. (1995).

Number of seeds pod$^{-1}$

Masoor-93 and Masoor-85 being equal to each other produced significantly more seeds pod$^{-1}$ than Masoor-local with the corresponding values of 1.74, 1.72 and 1.55 seeds pod$^{-1}$, respectively. These results coincide with those of Maqsood et al. (1991), Bakhtiar et al. (1992) and Rahman and Sarkar (1997).

Seeds pod$^{-1}$ were affected significantly by phosphorus application as compared to control. There was a linear increase in the number 0'1 seeds pod$^{-1}$ with each increment of phosphorus from 25 to 75 kg ha$^{-1}$ showing a range of 1.66 to 1.74 seeds pod$^{-1}$. The results are supported by the findings of Maqsood et al. (1991), Bakhtiar et al. (1992) and Rahman and Sarkar (1997).

1000-seed weight (g)

Seed test weight varied significantly among the three cultivars with the maximum (24.21 g) in Masoor-93 and the minimum of 17.04 g in Masoor-local while Masoor-85 intermediate, recording 17.93 g. This much variation among the cultivars might be due to their variable sink capacity and ability to convert dry matter into seed development. These results are corroborated with those of Salam and Islam (1994), Tufail et al. (1995), Gray et al. (1996), Rahman and Sarkar (1997) and Sadiq et al. (1998).

Among phosphorus levels, although phosphorus application increased the seed weight significantly over control but the difference between 50 and 75 kg P ha$^{-1}$ treatments was non-significant giving an average 19.96 and 20.10 g, respectively against the minimum of 19.24 g seed weight in control. The results clearly indicate the role of phosphorus in the development of lentil seed. These findings are in line with those of Kumar et al. (1993).

Seed yield (L_s g ha$^{-1}$)

The final yield of a crop is a function of the combined effect of their yield components. The data on seed yield ha$^{-1}$ indicated significant differences among the three cultivars with significantly the maximum (1163 kg ha$^{-1}$) in Masoor-93 because of its higher number of pods plant$^{-1}$ and 1000-seed weight and was followed by Masoor-85 (856 kg ha$^{-1}$) against the minimum of 773 kg ha$^{-1}$ in Masoor-local. Variable yield potential of different lentil genotypes has also been reported by Tufail et al. (1995), Gray et al. (1996), Rahman and Sarkar (1997) and Sadiq et al. (1998).

The different phosphorus levels also had significant effect on seed yield of lentil. The seed yield increased linearly with each successive increment of phosphorus from 25 to 75 kg ha$^{-1}$ over control showing a range of 812 to 1018 kg ha$^{-1}$. The results clearly showed the potential role of phosphorus application in improving the yield potential of lentil. These results are supported by the findings of Maqsood et al. (1991).

Harvest index (%)

Harvest index is an indication of the physiological ability of a cultivar to convert the dry matter into economic yield. Harvest index varied significantly among the cultivars. Masoor-93 and Masoor-85 being at par with each other gave significantly higher harvest index than Masoor-local showing a range of 39.57 to 42.45%. Similar results have been reported by Salam and Islam (1994) and Sadiq et al. (1998).

Phosphorus application also increased the harvest index significantly over control. However, the difference between 50 and 75 kg ha$^{-1}$ treatments was observed to be non-significant giving a harvest index of 42.15 and 42.85%, respectively. These results are in conformity with those of Kumar et al. (1993).

LITERATURE CITED

