PROPERTIES OF SALT AFFECTED SOIL UNDER EUCALYPTUS CAMALDULENSIS PLANTATION IN FIELD CONDITIONS

Muhammad Nasim1*, R.H. Qureshi2, M. Saqib2, Tariq Aziz1, Shafqat Nawaz1, J. Akhtar2 and M. Anwar-ul-Haq2

1Sub-Campus University of Agriculture, Faisalabad at Depalpur, Okara
2Saline Agriculture Research Centre, Institute of Soil & Environmental Sciences, University of Agriculture, Faisalabad-38040
Corresponding author’s Email: mnasimshahid@yahoo.com

Plantation of salt tolerant trees on salt affected land is an environmental friendly and economically viable strategy to live with salinity where ground water is also highly saline. We studied growth response of eucalyptus camaldulensis on salt affected land and its impact on soil pH, EC, SAR, organic matter contents and infiltration rate. Two sites were selected with varying levels of natural salinity. Eucalyptus seedlings were grown on both sites for three years. A wide variation exhibited in growth of eucalyptus plants at each site. Sixteen plants were selected randomly on each site on the basis of visual growth differences. Among these selected trees, eight were categorized as good and other eight as poor plants. Growth parameters, such as plant height, tree girth and numbers of branches were recorded to monitor the effect of salinity on plant growth. Soil samples under the canopy of selected plants were collected up to the depth of 90 cm and analyzed for EC, SAR, pH, organic matter contents and infiltration rate. Growth of Eucalyptus plants at both sites was significantly affected by salinity as compared with other plantations grown on other fields (visual observation). All growth parameters were significantly more in good plants at both sites compared to poor plants. Sodium and chloride concentration was significantly more with lower K:Na ratio in poor plants than in good ones. Amelioration of salt affected soil by Eucalyptus plantation was assessed by comparing the soil chemical and physical properties before plantation and after three years. The soil pH was quite lower in soil under good trees than in soil under poor trees at all depths and at both sites. Sodium adsorption ratio (SAR) of soil under good plants at both sites was quite lower when sampled under the canopy of poor plants.

Keywords: Eucalyptus spp, salinity stress, ion imbalance, sodium concentration

INTRODUCTION

Salinization of soil and water is an important factor for increased desertification in arid and semi-arid regions of the world (Szabolcs, 1992). About 6.3 million hectares of arable land in Pakistan is affected to varying degrees of salinity/sodicity. A number of strategies including use of chemical amendment and engineering approaches had been proposed for reclamation and revegetation of saline waste lands (Ashraf, 1994; Flowers, 2004). The high initial investment to purchase chemical amendment and low salinity tolerance of our major agriculture crops impels to develop and adopt more viable and economical strategies for highly salt affected lands.

Saline agriculture is an environment friendly and economically viable approach to live with salinity as certain crop species and varieties are available with high salt tolerance (Aslam et al, 1993). A number of mechanisms have been proposed by which tree plantations can ameliorate the soil salinity and sodicity. These mechanisms include release of organic acids and complex energy sources by roots (Dormaar, 1988) and increase in partial pressure of CO\textsubscript{2} (Qadir et al., 1996) as well as a decrease in soil pH (Mashali, 1991; Qadir et al., 1996). Increased CO\textsubscript{2} concentration in soil releases Ca2+ from dissolution of CaCO\textsubscript{3}. Physical movement of roots within soil also improves soil aeration and porosity favourable for plant growth on sodic soils.

Under high salinity levels in the soil, many salt tolerant crops even fail to produce economic growth and yield, hence are not economical to grow on highly salt affected lands (Aslam et al., 1997). The development and maintenance of sustainable agro-ecosystem on highly salt-affected lands is an easier and more economical strategy with perennial plant species. The use of trees and shrubs to reclaim saline
Eucalyptus plantation on salt affected soils

lands has been a subject of interest for many years (Qureshi et al., 1993). Growth of trees are very slower than agronomic crops, hence their ameliorative action might be of sustainable nature. Organic matter content of many forest soils is often high because of litter deposition and more decomposition of roots in the soil. In addition, trees also exhibit all of above mentioned mechanisms to control salinity and sodicity, hence can be selected for revegetation of highly salt affected lands (Qureshi et al., 1993; Nasim, 2000). Eucalyptus is one of many tree species that has been planted successfully under a variety of ecological conditions of Pakistan (Siddiqui et al., 1984). In an adaptation trail near Faisalabad, the Eucalyptus spp. performed better than eleven other species studied over seven and half years (Qureshi et al., 1993). We screened thirteen Eucalyptus spp in a solution culture experiment for their growth performance under four salinity levels. Species differed significantly for their relative growth and were categorized into four groups viz. tolerant, moderately tolerant, moderately sensitive and sensitive. (Nasim, 2000). Growth of Eucalyptus camaldulensis (either Local or Silverton) was extraordinary as both of these species performed better at normal as well as in saline conditions. Van der Moezel et al. (1988) also reported that Eucalyptus camaldulensis is very tolerant in response to step-wise increases in salinity (42 dS m⁻¹) than all the other Eucalyptus species.

Taking into consideration the salinity tolerance of Eucalyptus camaldulensis, the present project was planned to assess i) the effect of salinity on growth of eucalyptus trees and ii) the amelioration of salt affected land by eucalyptus plantation. The eucalyptus plants were grown on two different sites (highly saline-sodic) at Satiana for three years and physico-chemical properties of soil before and after plantation were compared. The growth of trees at both sites showed wide variation. The present paper reports the ameliorative effect of plantation on soil EC, pH, SAR and water infiltration rate and the reasons for of such wide variation in growth of eucalyptus trees observed at both sites.

MATERIALS AND METHODS

The experiment was conducted at village Satiana, 28 km in south east of Faisalabad. Two different sites were selected viz site-I at Chak No. 37/GB and site-II at Chak No. 74/GB, each spreading on three hectares. Ten soil samples from each site were collected at random for physico-chemical analysis. At site-I, soil was highly saline-sodic with ECe 16.1-37.7, pH 7.4-9.40 and SAR 20.2-47.6. The texture at site-I was sandy clay loam to clay loam, organic matter contents 0.37% and infiltration rate was 0.50 cm hr⁻¹. At site II, soil was also saline-sodic with an ECe of 8.0-39.9, pH 8.0- 9.60 and SAR of 11.0-30.2. The texture at site-II was clay loam to silty clay loam, organic matter content was 0.30 % and infiltration rate was 0.46 cm hr⁻¹.

The study was a part of revegetation program of salt affected area under “Joint Satiana Pilot Project” of Saline Agriculture Research Centre (SARC), University of Agriculture, Faisalabad. Seedlings were grown by the farmers under natural salinity environment. Ground water/drain water [EC 2.0 dSm⁻¹, RSC 6.4me L⁻¹ and SAR 13.3 (mmol L⁻¹)¹/²] was used for irrigation of fields. The cultural practices and growth observations were monitored for three years by SARC.

The growth of eucalyptus trees at both sites was quite heterogeneous. On the basis of their visual growth differences sixteen plants of three years age at each site were selected, with eight good and eight poor in growth. The growth parameters viz plant height, girth, number of branches of selected trees at both sites was recorded. Soil samples under the canopy of each plant were collected (by making holes 25 cm away from tree trunk) from 0-15, I5-30, 30-60, and 60-90 cm depths. The soil samples were analyzed for ECe, pHg, SAR, organic matter and texture following the methods described by the U.S. Salinity Laboratory Staff (Richards, 1954). Infiltration rate in the root vicinity of selected plants was measured with the help of double ring infiltrometer (Richards, 1954).

Leaves were collected from each selected tree to study their ionic composition. The leaf samples were oven dried (70 C) and ground in a mechanical mill. The ground leaf samples (0.5 g) were extracted with HNO₃ for Cl⁻ determination (Rashid, 1986). Chloride concentration was analyzed by Chloride Analyzer (Corning Chloride Analyzer 926). For K⁺ and Na⁺ determination, plant samples were digested in tri-acid mixture of perchloric acid, nitric acid and sulfuric acid. Estimation of Na⁺ and K⁺ was conducted on a
Eucalyptus plantation on salt affected soils

Flame Photometer (Jenway PFP-7 Flame Photometer). Statistical interpretation of data was carried out according to the standard procedures described by Steel and Torrie (1980).

RESULTS

Tree Growth

Tree height, girth and number of branches in the case of good plants were quite higher than those in poor plants at both sites (Fig. 1a, b & c). The growth data was recorded thrice after every four months of interval. It was observed that growth of plants increased uniformly in case of good plants, but it was decreased in poor plants, with time. Growth data in relation to time is not presented here.

Tree height was significantly more in case of good plants at both sites (Fig 1a.). The variation among good and poor plants was more obvious at site-I as compared to site-II. At site-I tree height of poor plants was 2.05 m, while it was 7.8 m in case of good plants. At site-II height of poor plants was similar to those grown at site-I. However, height of good plants at site-II were significantly lower than those grown at site-I.
Eucalyptus plantation on salt affected soils
Fig. 1. Tree height (A), girth (B) and number of branches (C) of Eucalyptus plants grown on two different sites.
Eucalyptus plantation on salt affected soils

Fig. 2. Sodium (A), potassium (B) and chloride (C) concentration in Eucalyptus plants grown on two different sites. Values on bars in fig b represents K:Na ratio in tissues of eucalyptus trees.
Girth of trees at site-I varied from 31.0 cm to 39.9 cm in good plants and from 8.39 cm to 7.45 cm (decreasing trend) in case of poor plants. At site-II, girth of trees was quite lower than those at site-I (Fig. 1b). Similarly tree girth increased uniformly with time in case of good plants and reverse was the case in poor plants. Number of branches increased with time in case of good trees at both sites and the difference in number of branches among both sites was more than ten folds (Fig. 1c). The poor plants borne only 6
Eucalyptus plantation on salt affected soils

to 8 branches and good plants > 80 branches per tree. It was interesting to note that number of branches of good plants was quite low at site-I, however reverse was case in number of branches of poor plants.

Ionic Composition of Plant Leaves

Sodium concentration in leaves of good eucalyptus plants was lower than in poor ones at both sites (Fig. 2a), although the difference was non-significant at site-II. It varied significantly among both sites and was more in plants grown at site-II.

Potassium concentration in eucalyptus leaves grown at site-II was quite higher than those grown at site-I (Fig. 2b). Potassium concentration did not differ among good and poor plants at both sites. Potassium sodium ratio in plants grown at site-I was quite higher than those grown at site-II.

Chloride concentration in plants differed among both sites as well as among good and poor plants (Fig. 2c). It was significantly more in poor plants than in good ones at both sites.

Soil Chemical Properties

The trees selected were categorized into two classes on the basis of visual growth viz. good and poor trees. The soil samples were collected from both categories and from both sites. At Site-I, soil pH was > 8.5 at all depths irrespective of the tree condition. The soil reaction (pH) was quite lower in soil under good tree than in soil under poor trees at all depths (Table 1). Soil at site-II was more sodic than site-I as pH was quite high especially at shallower depths. However, at lower depths, soil pH at both sites was almost similar. Soil reaction under good trees was lower than that under poor trees (Table 1).

Table 1. pH of soil samples taken from root vicinity of different categories of Eucalyptus plants at two sites

<table>
<thead>
<tr>
<th>Depths</th>
<th>Site I Good plants</th>
<th>Site I Poor plants</th>
<th>Site II Good plants</th>
<th>Site II Poor plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1 (0-15 cm)</td>
<td>8.68 ± 0.12</td>
<td>9.03 ±0.12</td>
<td>9.36 ± 0.60</td>
<td>9.59 ± 0.27</td>
</tr>
<tr>
<td>D2 (15-30 cm)</td>
<td>8.90 ± 0.13</td>
<td>9.02 ± 0.32</td>
<td>9.24 ± 0.60</td>
<td>9.20 ± 0.48</td>
</tr>
<tr>
<td>d3 (30-60 cm)</td>
<td>8.78 ± 0.32</td>
<td>9.01 ± 0.12</td>
<td>8.73 ± 0.50</td>
<td>9.04 ± 0.35</td>
</tr>
<tr>
<td>d4 (60-90 cm)</td>
<td>8.66 ± 0.07</td>
<td>9.00 ± 0.14</td>
<td>8.81 ± 0.15</td>
<td>8.72 ± 0.42</td>
</tr>
</tbody>
</table>

The electrical conductivity of soil at site-I < 4 dS m$^{-1}$ when averaged over all depths and it was low under good plants as compared to poor ones at shallower depths however, the trend was opposite at lower depths (Table 2). At site-II, EC of soil was > 4 dS m$^{-1}$ when averaged over all depths and it decreased gradually under good as well as poor plants as depth increased. The soil at surface was quite saline and salinity was significantly more under poor plants.

Sodium adsorption ratio (SAR) of soil at both sites was quite lower when sampled under the canopy of good plants (Table 3). The SAR value of soil at site-I was about two folds higher than that of site-II under poor plants. But difference was not significant in case of good plants. The SAR of soil decreased significantly with increasing depth of soil under the poor plants. However, SAR of soil under good plants did not vary with depth.

Effect of plantation on infiltration was quite obvious as it was more than double of original infiltration rate before plantation at both sites (Fig. 3a). The infiltration rate of the soil at both sites was statistically at par and it was more than 3 folds higher in case of good plants. Organic matter contents of soil at both sites were increased (3.5 folds) significantly after three years of eucalyptus plantation (contents were > 1.4%) when compared to original soil before plantation (<0.4%) at both sites in case of good plants (Fig. 3b). In soil samples collected from poor plants after three years, organic matter contents were statistically similar to that observed before plantation.

DISCUSSION

408
Tree growth at both sites was severely affected by salinity when Eucalyptus growing on nearby good lands was compared with these sites (Visual observation). A huge variation existed among eucalyptus plants grown on same sites. Salt-affected soils are quite heterogeneous (Richards, 1983), under these conditions, differential growth of plants can be expected.
Table 2. ECe (ds m\(^{-1}\)) of soil samples taken from root vicinity of different categories of Eucalyptus plants (Av. of 8 plants ± SE)

<table>
<thead>
<tr>
<th>Depths</th>
<th>Site-I</th>
<th>Site-II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Good plants</td>
<td>Poor plants</td>
</tr>
<tr>
<td>D1 (0-15 cm)</td>
<td>2.70 ± 0.31</td>
<td>4.38 ± 0.60</td>
</tr>
<tr>
<td>D2 (15-30 cm)</td>
<td>3.61 ± 0.78</td>
<td>3.81 ± 0.54</td>
</tr>
<tr>
<td>D3 (30-60 cm)</td>
<td>4.61 ± 0.73</td>
<td>2.89 ± 0.51</td>
</tr>
<tr>
<td>D4 (60-90 cm)</td>
<td>4.19 ± 0.54</td>
<td>2.62 ± 0.35</td>
</tr>
</tbody>
</table>

Table 3. SAR (mmol L\(^{-1}\)) of soil samples taken from root vicinity of different categories of Eucalyptus plants (Average of 8 plants ± SE)

<table>
<thead>
<tr>
<th>Depths</th>
<th>Site-I</th>
<th>Site-II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Good plants</td>
<td>Poor plants</td>
</tr>
<tr>
<td>D1 (0-15 cm)</td>
<td>17.93 ± 2.54</td>
<td>45.54 ± 12.12</td>
</tr>
<tr>
<td>D2 (15-30 cm)</td>
<td>22.74 ± 3.98</td>
<td>44.94 ± 20.45</td>
</tr>
<tr>
<td>D3 (30-60 cm)</td>
<td>23.94 ± 3.30</td>
<td>39.76 ± 12.46</td>
</tr>
<tr>
<td>D4 (60-90 cm)</td>
<td>19.59 ± 2.46</td>
<td>34.51 ± 13.48</td>
</tr>
</tbody>
</table>

Eucalyptus plantation on salt affected soils

At both sites, good plants were growing.
Eucalyptus plantation on salt affected soils

progressively with time, whereas, the poor plants were just surviving and negative trend in the growth of these plants was noticed. Such a great variation may either due to large variation in salinity/sodicity of the soil profile and genetic diversity in the plant species or localized site specific associated problems. The declined growth in poor plants may be because of decrease in the size of the circumference due to excessive shedding of bark and drying up of branches with age, thereby resulting in a less number of branches on these trees. Similar adverse effects of salinity on plant growth are very well documented in the literature (Qureshi et al. 1993; Marcar and Crawford, 1996).

The most prominent difference in soil properties under the good and poor plants at both the sites was of water intake rates, which were much lower in the root zone of poor plants than the good plants. The water intake is generally related to the texture and SAR values of the soil. It was observed that the soil under the poor plants was more compact and hard as compared to soil under the good plants. Sodic soils which have high relative Na$^+$ content, can impede root growth due to poor aeration and may also create nutritional disorders/imbalance because of elevated soil pH (Marcar and Crawford, 1996). This could be one of the reasons for poor growth of plants, since compact soil has negative effect on nutrient availability and root penetration (Borges et al., 1986). Thus soil, under the poor plants with high pHs and sodicity (SAR), ultimately resulted in severe reduction of growth.

Salt stress affects uptake, transport and utilization of different nutrients (Marschner, 1995; Grattan and Grieve, 1999; Zhu, 2003), which may results in excessive accumulation of Na$^+$ and Cl$^-$ in tissue (Saqib et al., 2000) and ultimately reduction in crop yield. The other possible reason of poor growth could be the ion excess (upto toxic level) in case of poor plants at both sites. This hypothesis is further strengthened when overall growth of plants at site II was found inferior to plants grown at site I: Plants of sites II had in general higher concentration of ions in their leaves as compared to plants of site I. Sodium and Cl$^-$ concentrations in the leaves of poor plants were significantly higher as compared to good plants. High Na$^+$ and Cl$^-$ concentrations are considered responsible for reduced growth in Eucalyptus (Marcar, 1989), and wheat (Akhtar et al., 1998).

Many earlier researchers have used Na:K ratio as an indicator of salinity tolerance (Saqib et al., 2004; Saqib et al., 2005; Munns, 2005) as a low Na:K ratio in the cytosol is essential for normal cellular functions of plants (Chinnusamy, et al., 2005). In leaves of poor plants, K:Na ratio was quite lower than found in good plants. Low K:Na ratio in the plant tissue may be the result of loss in capacity to maintain K$^+$ selectivity over Na$^+$ at higher external salinity/sodicity (Huang and Van Steveinck, 1989). Lower K:Na ratio in leaves of salt affected plants of Eucalyptus camaldulensis was also indicated by Marcar (1993). Ameliorative effects of Eucalyptus plantation on soil characteristics were noticed by comparing the soil physico-chemical properties observed before plantation and after three years. A large decline in initial soil salinity/sodicity (ECe, SAR & pHs) was observed on both sites. The reduction in soil salinity might be attributed to decreased surface evaporation because of vegetative cover, consequently revising the process of upward movement of salts through capillary fringe (Qureshi et al., 1993). Good plants caused high reduction in soil pH through root action. Similar changes in soil pH were recorded by other researchers (Qureshi et al., 1993; Singh, 1989, Hussain and Gull, 1991). In the present study soil SAR under poor plants was highest at surface and decreased continuously with depth. Decreasing trend in SAR because of tree plantation in light textured salt-affected soil was also reported by Qureshi et al., (1993). Not only soil SAR was lowered, but the infiltration capacity under healthy plants was more which was attributed to more development of roots and enhanced root exudates (Dormaar, 1988). Root exudates might have resulted in an increased solubility of soil precipitated Ca$^{2+}$ as calcium sulfate, calcium bicarbonate or calcium carbonate that replaced Na$^+$ ions and simultaneously resulted improvement in physical conditions of the soil (Shah, 1992; Hussain and Gull. 1991).

CONCLUSION

Eucalyptus plantation showed a wide variation in growth at the two sites. Site specific problems and heterogeneity in soil salinity and sodicity may be attributed for these variations. A three years old plantation significantly decreased soil EC, pH and SAR at both sites under good plants. The soil under poor plants did not showed significant reclamation of salinity and sodicity. Soil infiltration rate was also improved at both sites after three years of plantation.
REFERENCES

Eucalyptus plantation on salt affected soils
Eucalyptus plantation on salt affected soils

